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Reaction-Diffusion Model as a
Framework for Understanding
Biological Pattern Formation
Shigeru Kondo1* and Takashi Miura2

The Turing, or reaction-diffusion (RD), model is one of the best-known theoretical models
used to explain self-regulated pattern formation in the developing animal embryo. Although its
real-world relevance was long debated, a number of compelling examples have gradually alleviated
much of the skepticism surrounding the model. The RD model can generate a wide variety of
spatial patterns, and mathematical studies have revealed the kinds of interactions required for
each, giving this model the potential for application as an experimental working hypothesis in
a wide variety of morphological phenomena. In this review, we describe the essence of this theory
for experimental biologists unfamiliar with the model, using examples from experimental studies
in which the RD model is effectively incorporated.

Over the past three decades, studies at the
molecular level have revealed that a wide
range of physiological phenomena are

regulated by complex networks of cellular or mo-
lecular interactions (1). The complexity of such
networks gives rise to new problems, however,
as the behavior of such systems often defies im-
mediate or intuitive understanding. Mathematical
approaches can help facilitate the understanding
of complex systems, and to date, these approaches
have taken two primary forms. The first involves
analyzing every element of a network quantita-
tively and simulating all interactions by compu-
tation (1). This strategy is effective in relatively
simple systems, such as the metabolic pathway
in a single cell, and is extensively explored in the
field of systems biology. However, for more com-
plex systems in which spatiotemporal parameters
take on importance, it becomes almost impos-
sible to make a meaningful prediction. A second
strategy, one that includes simple mathematical
modeling in which the details of the system are
omitted, can be more effective in extracting the
nature of the complex system (2). The reaction-
diffusion (RD) model (3) proposed by Alan
Turing is a masterpiece of this sort of mathe-
matical modeling, one that can explain how
spatial patterns develop autonomously.

In the RDmodel, Turing used a simple system
of “two diffusible substances interacting with
each other” to represent patterning mechanisms
in the embryo and found that such systems can
generate spatial patterns autonomously. The most
revolutionary feature of the RD model is its in-
troduction of a “reaction” that produces the
ligands (morphogens). If “diffusion” alone is at

work, local sources of morphogens are needed to
form the gradient. In such cases, the positional
information made by the system is dependent on
the prepattern (Fig. 1, A and B). By introducing
the reaction, the system gains the ability to gen-
erate various patterns independent of the pre-
pattern (Fig. 1C). Unfortunately, Turing died soon
after publishing this seminal paper, but simula-

tion studies of the model have shown that this
system can replicate most biological spatial pat-
terns (4–6). Later, a number of mathematical
models (4) were proposed, but most followed
Turing’s basic idea that “the mutual interaction
of elements results in spontaneous pattern for-
mation.” The RD model is now recognized as a
standard among mathematical theories that deal
with biological pattern formation.

However, this model has yet to gain wide
acceptance among experimental biologists. One
reason is the gap between the mathematical sim-
plicity of themodel and the complexity of the real
world. The hypothetical molecules in the original
RD model have been so idealized for the pur-
poses of mathematical analysis that it seems
nearly impossible to adapt the model directly to
the complexity of real biological systems. How-
ever, this is a misunderstanding to which exper-
imental researchers tend to succumb. The logic of
pattern formation can be understood with simple
models, and by adapting this logic to complex
biological phenomena, it becomes easier to ex-
tract the essence of the underlying mechanisms.
Genomic data and new analytic technologies
have shifted the target of developmental research
from the identification of molecules to understand-
ing the behavior of complex networks, making
the RD model even more important as a tool for
theoretical analysis.
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Fig. 1. Schematic drawing showing the difference between the morphogen gradient model and Turing
model. (A) A morphogen molecule produced at one end of an embryo forms a gradient by diffusion. Cells
“know” their position from the concentration of the molecule. The gradient is totally dependent on the
prepattern of the morphogen source (boundary condition). (B) Adding a second morphogen produces a
relatively complex pattern; but with no interactions between the morphogens, the system is not self-
regulating. (C) With addition of the interactions between the morphogens, the system becomes self-
regulating and can form a variety of patterns independent of the prepattern. [Art work by S. Miyazawa]
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In this review, we describe the RDmodel and
its experimental applications, addressing some
of the points biologists tend to question.We hope
many biologists gain an appreciation for this
beautiful theory and take advantage of it in their
experimental work.

The Original Turing Model
At the beginning of his original paper (3), Turing
stated that his aim was to show that the com-
bination of known physical elements is sufficient
to explain biological pattern formation. The ele-
ments selected by Turing were a theoretical pair
of interacting molecules diffused in a contin-
uous field. In his mathematical analysis, Turing
revealed that such a system yields six potential
steady states, depending on the dynamics of re-
action term and wavelength of the pattern [Fig.
2A and Supporting Online Material (SOM) Text
1-1]. In case I, the system converges to a stable
and uniform state. In case II, a uniform-phase os-
cillation of the morphogen concentration occurs.
Such phase unification is seen in such systems as
circadian rhythms (7) and the contraction of heart
muscle cells (8). In case III, the system forms
salt-and-pepper patterns, such as are made when
differentiated cells inhibit the differentiation of
neighboring cells. This is seen, for example, with
differentiated neuroprogenitor cells in the epithe-
lium of Drosophila embryos (9). Case IV repre-
sents an unusual state in which a pattern of the
sort made in case III oscillates. No examples of
this have been identified in a developmental sys-
tem. In case V, a traveling wave is generated. Bio-
logical traveling waves caused by this mechanism
include the spiral patterns formed by the social
amoeba Dictyostelium discoideum on aggrega-
tion (10), and the wave of calcium ions that tra-
verses the egg of the frog Xenopus laevis on
sperm entry (11).

In case VI, stationary patterns are made. The
finding of this type of wave is the major achieve-
ment of Turing’s analyses, and these are usually
referred to as Turing patterns. ATuring pattern is
a kind of nonlinear wave that is maintained by the
dynamic equilibrium of the system. Its wave-
length is determined by interactions between mol-
ecules and their rates of diffusion. Such patterns
arise autonomously, independent of any preexist-
ing positional information. [The supportingmate-
rials contain an expanded explanation of the RD
model for biologists who are unfamiliar with the
mathematical description (SOM Text S1-1), as
well as a mathematical explanation of how the
periodic pattern arises in the system (SOM Text
S1-2).] This property makes it possible to explain
how patterns arise precisely in, for example, fer-
tilized oocytes, which present little in the way
of positional information. The ability of Turing
patterns to regenerate autonomously, even after
experimentally induced disturbances, is also im-
portant and of great utility in explaining the au-
tonomy shown by pattern-forming developmental
processes (4, 6). In addition, through the tuning
of parameters and boundary conditions, the sys-

tem underlying Turing pattern formation can gen-
erate a nearly limitless variety of spatial patterns.
(Figure 2B shows representative two-dimensional
patternsmade by simulationswith the RDmodel.)
The intricate involutions of seashells (5), the ex-
quisite patterning of feathers (12), and the breath-
takingly diverse variety of vertebrate skin patterns
(13) have all been modeled within the framework
of the Turing model (Fig. 2C). The remarkable
similarity between prediction and reality in these
simulations points strongly to Turing mechanisms
as the underlying principle in these and other
modes of biological patterning. (User-friendly
simulation software is available as supporting
online material; a manual of the software is in
SOM Text 1-3.)

Compatibility of RD and Gradient Models
Experimental biologists may recall the “gradient
model,”which has been quite effective in explain-
ing pattern-formation events (14). In the classic
gradient model, the fixed source of the morpho-
gen at a specific position provides positional in-
formation (14) (Fig. 1). Although the assumption
of a morphogen source appears to be different
from the assumptions of the RD model, it can be
introduced into the RDmodel quite naturally as a
“boundary condition.” In other words, the classic
morphogen gradient model can be thought of
as the specific case of the RD model in which the
reaction term is removed. In many simulation
studies, such boundary conditions are used to make
the pattern more realistic (6). Recent experimental
studies ofmorphogen gradients have shown that the
precision and the robustness of the gradient are
secured by the interactions ofmolecular elements
(15). To model such situations, the authors used a
mathematical framework that is essentially iden-
tical to that of the RD model. Both reaction and
boundary conditions are essential to understand-
ing complex real systems, and the RD model is
useful for modeling such cases.

Applying the “Simple” RD Model to a
Complex Reality
The hypothetical molecules in the original RD
model (3) are idealized for the purposes of math-
ematical analysis. It is assumed that they control
their own synthesis and that of their counterparts,
and diffuse quickly across spaces that would be
divided by cellular membranes. Obviously, it is
quite difficult to apply such a model directly to
complex living systems.

Concerted efforts to align theoretical models
to real-world systems, however, have begun to
bear fruit, pointing to a much broader range of
situations in which the general principles under-
lying the Turing model might apply. Gierer and
Meinhardt (16, 17) showed that a system needs
only to include a network that combines “a short-
range positive feedback with a long-range nega-
tive feedback” to generate a Turing pattern. This
is now accepted as the basic requirement for
Turing pattern formation (14, 16). This refinement
leaves the types and numbers of reacting factors

unspecified, making it much simpler to envision
systems that might fit the requirements.

The interacting elements need not be limited
to molecules, or even to discrete entities; a circuit
of cellular signals will do just as well (18). There
is also no need for the stimulus to be provided via
diffusion; othermodes of transmission can achieve
the same end result. Theoretical modeling has
shown that a relayed series of direct cell-to-cell
signals can form awave having properties similar
to one formed by diffusible factors (19). Other
forms of signaling, including chemotactic cell mi-
gration (20), mechanochemical activity (21), and
neuronal interactions [as in the Swindale model
(22) of ocular dominance stripe formation], are
also capable of forming Turing-like patterns. For
all of these systems, a similar periodic pattern is
formed when the condition of “short-range posi-
tive feedback with long-range negative feedback”
is satisfied.

Why systems represented by apparently differ-
ent equations behave similarly, and howmuch the
capacity for pattern forming differs among them,
are the important subjects from the mathematics
perspective. But if the dynamics of the systems
are nearly the same, experimental researchers can
select any of the models as their working hypoth-
esis. In the case of fish skin patterning, although
experiments apparently suggest the involvement
of a nondiffusing signal transduction mechanism,
the simplest RDmodel can predict themovement
of the pattern during fish growth (23) and the
unusual patterns seen in hybrid fish (24).

Finding Turing Patterns in Real Systems
During embryogenesis, a great variety of periodic
structures develop from various nonperiodic cell
or tissue sources, suggesting that waves of the
sort generated by Turing or related mechanisms
may underlie a wide range of developmental pro-
cesses. Using modern genetic and molecular tech-
niques, it is possible to identify putative elements
of interactive networks that fulfill the criteria of
short-range positive feedback and long-range
negative feedback, but finding the network alone
is not enough. Skeptics rightly point out that just
because there is water, it doesn’t mean there are
waves. Nomatter how vividly or faithfully a math-
ematical simulation might replicate an actual
biological pattern, this alone does not constitute
proof that the simulated state reflects the reality.
This has been another major hurdle in identifying
compelling examples of Turing patterns in living
systems. The solution, however, is not so com-
plicated; to show that a wave exists, we need to
identify the dynamic properties of the pattern that
is predicted by the computer simulation. Exper-
imental demonstrations have focused on pattern
formation in the skin, because the specific char-
acteristics of Turing patterns are more evident in
two dimensions than in one.

Turing Patterns in Vertebrate Skin
Observation of the dynamic properties of Turing
patterns in nature was made by Kondo and Asai
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A

B

C

Initial condition

Six stable states

Case VI (Turing pattern)Case V

Uniform, stationary

Oscillatory cases
with extremely short

wavelength

Oscillatory cases
with finite 
wavelength

Stationary waves with
finite wavelength
(Turing pattern)

Uniform, oscillating Stationary waves with
extremely short wavelength

Both morphogens
diffuse and react
with each other

I II III

IV V VI

Fig. 2. Schematic drawing showing the mathematical analysis of the RD
system and the patterns generated by the simulation. (A) Six stable states
toward which the two-factor RD system can converge. (B) Two-dimensional
patterns generated by the Turing model. These patterns were made by an
identical equation with slightly different parameter values. These simulations
were calculated by the software provided as supporting online material. (C)

Reproduction of biological patterns created by modified RD mechanisms. With
modification, the RD mechanism can generate more complex patterns such as
those seen in the real organism. Simulation images are courtesy of H. Meinhardt
[sea shell pattern (5)] and A. R. Sandersen [fish pattern (13)]. Photos of actual
seashells are from Bishougai-HP (http://shell.kwansei.ac.jp/~shell/). Images of
popper fish are courtesy of Massimo Boyer (www.edge-of-reef.com).
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in a study of horizontal stripes in the tropical fish,
Pomacanthus imperator (25). They have recently
shown that this dynamic nature is shared by
many fish species, including the well-established
model organism, zebrafish. Although zebrafish
stripes may appear to be stationary, experimental
perturbation of the pattern triggers slow changes
(23). Following laser ablation of pigment cells in
a pair of black horizontal stripes, the
lower line shifts upward before sta-
bilizing in aBell-like curve (Fig. 3A)
(23). As a result, the spatial interval
between the lines is maintained, even
when their direction changes. This
striking behavior is predicted by
simulation (Fig. 3B).

Fortunately, the zebrafish is ame-
nable to a variety of experimental
approaches that may lead to the
identification of the circuit of inter-
actions that generates these patterns
(26).Work to date has shown that the
skin patterns of this fish are set up and
maintained by interactions between
pigmented cells (26). Nakamasu
worked out the interaction network
among the pigment cells. Although
the shape of the network is differ-
ent from that of the original Turing
model, it fits the short-range posi-
tive, long-range negative feedback
description (18). (The mutual inhi-
bition between black and yellow
cells behaves as a positive feedback
loop, as the expansion of black cells
weakens their counterpart.) Identi-
fication of the genetic factors in-
volved in the zebrafish pigmentation
is under way (26), and it is hoped
that this will clarify the details of the
signaling network beneath thewaves
in the skin of fish, and potentially
all vertebrates. Many similar surface
patterns are seen in invertebrates and
plants. We suppose that in these
cases an essentially similar mecha-
nism (RD mechanism) is involved,
although their molecular basis may
be different.

Other well-studied examples in-
clude the regular disposition of feather
buds in chick (27), and of hair fol-
licles inmice (28). Jung et al. showed
that the spatially periodic pattern of
feather buds regenerates even when
the skin is recombined from disso-
ciated cells (27). In the case ofmouse
hair follicles, alteration of the amount
of putative key factors changes the
pattern in a manner predicted by
computer simulation. Sick et al. used
overexpression and inhibition ofWnt
and Dkk in fetal mouse to study
how such perturbations might affect
the patterning of follicle formation

(28). By simulation, they first predicted that a
ringed pattern of Wnt gene expression that does
not occur in nature would result if ectopic pro-
duction of a Wnt protein were to be controlled
appropriately, and then confirmed this experi-
mentally. They suggested that Wnt serves as a
short-range activator, and Dkk as a long-range
inhibitor, in this system (28). This pair of factors

functions in various patterning processes as well,
making this a critically important result for the
intimations it provides of a wider role for Turing
patterns in development (Fig. 4). Interestingly,
the growth of new hair relying on interactions
between neighboring follicles proceeds even in
adult mice, and in one case a mutant was iden-
tified in which a traveling wave of hair formation

gradually moved across the skin
over the life of animals carrying this
mutation (29). Plikus et al. (29) have
shown how the factors FGF (fibro-
blast growth factor) and BMP (bone
morphogenetic protein) function to
generate the traveling wave (case V
in the Turing model).

Other Potential Turing-Driven
Developmental Phenomena
Establishment of right-left asym-
metry in vertebrates is triggered by
the unidirectional rotation of cilia at
the node, followed by the interac-
tion of Nodal and Lefty that am-
plify and stabilize faint differences
in gene expression (30, 31). Nodal
enhances both its own expression
and that of Lefty, and Lefty inhibits
the activity of Nodal. The fact that
Lefty spreads further than Nodal
suggests that the inhibitory interac-
tion propagates more quickly than
does its activating counterpart, which
as we have seen, indicates that this
system fulfills the fundamental re-
quirements for Turing pattern for-
mation (30) (Fig. 4).

In vertebrate limb development,
precartilage condensation, which is
later replaced by skeletal bone, oc-
curs periodically along the anterior-
posterior axis of the distal tip region.
Because this patterning occurs with-
out any periodic prepattern, the
Turing model has long been sug-
gested to describe the underlying
mechanism (32). In this system, trans-
forming growth factor–b (TGF-b)
has been invoked as a candidate for
the activator molecule (33). TGF-b
can stimulate its own production
and trigger precartilage conden-
sation, and the sites of incipient
condensation exert a laterally acting
inhibitory effect on chondrogenesis.
Although no candidate inhibitor has
been identified, an interaction net-
work comprising TGF-b function
and precartilage condensation may
satisfy the short-range activation and
long-range inhibition criteria (33).
Miura and Shiota have shown that
nearly periodic spatial patterns of
chondrogenesis occur in the culture
of dissociated limb cells in vitro,

Day 13

Day 16

Day 20

Day 23

C

A B

Short-range 
positive feedback

Long-range negative feedback

Fig. 3. Movement of zebrafish stripes and the interaction network among the
pigment cells. The pigment pattern of zebrafish is composed of black pigment cells
(melanophores) and yellow pigment cells (xanthophores). The pattern is made by the
mutual interactionbetween these cells. (A)Melanophores in the twoblack stripeswere
ablated by laser, and the process of recovery was recorded. (B) Results of simulation
by the Turingmodel. (C) Interaction network between the pigment cells deduced by
experiments. The red arrow represents a long-range positive (enhancing) effect,
whereas the blue linewith the endbar represents a short-range negative (inhibitory)
effect. A circuit of two negative interactions functions as a positive feedback.
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and that the addition of TGF-b changes the pat-
tern in a manner consistent with the predictions
of Turing’s model (34).

Wnt and Dkk are also essential for lung
branching in vertebrates (35) and play a key role
in head regeneration in Hydra (36), in which in-
volvement of the Turingmechanism has long been
suggested by theoretical and experimental studies.
Involvement of the same molecules does not di-
rectly prove that the same dynamic mechanism is
at work. However, because they constitute the
self-regulated system that is robust to artificial
perturbations, it is reasonable to expect that the
Turingmechanismmay underlie these phenomena
as it does those in the skin. Watanabe et al. have
shown that signal transduction via the gap junction
(connexin41.8) plays a key role in pigment pat-
tern formation in zebrafish (37). Loss of function

of the connexin gene (leopard)
reduces the spatial periodicity and
changes the pattern from stripes to
spots (37). Amutation in another
gap junction gene, connexin43,
shortens each fin ray, resulting
in shortened fins (38). Although
the detailed molecular mecha-
nism underlying this phenome-
non has yet to be elucidated, it is
possible that the same mecha-
nism functions in other processes
of animal development. The above
examples are by no means an
exhaustive list of the candidates
currently being examined as po-
tential biological Turing patterns.
More detailed discussions are
provided in (4) and (6).

Identification of the specific
dynamics of the RD system is
critical to showing the applica-
bility of the Turingmechanism to
the formation of a given pattern.
In the case of pigment pattern
formation, it was possible to dis-
turb the pattern and observe the
process of regeneration. In most
other systems, such observation
is complicated because experi-
mental perturbations may be
lethal. This is one reason why it
is difficult to demonstrate RD ac-
tivity in some biological systems.
(In SOMText 1-4, we have sum-
marized the important points for
researchers to keep inmindwhen
they use the RD model as the
working hypothesis.) However,
recent technological advances in
imaging technologies are assist-

ing such studies.Moreover, the artificial generation
of Turing patterns in cell culture should be possible
in the near future as the result of synthetic biology
(39). Turing was born in 1912 and published his
RD model in 1952. Although he was unable to
witness the impact of his hypothesis on the work
of contemporary biologists, we are hopeful that
with an increased acceptance among experimental
biologists of the principles he first elucidated, we
will see Turing’s mechanism take its place as a
model for the understanding of spatial pattern
formation in living systems.
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Fig. 4. Possible networks of protein ligands may give rise to Turing
patterns in the embryo. Shown above are candidates for the RD
mechanism proposed by molecular experiments. For a detailed
explanation of each network, refer to the text and the articles listed
in the references. In all these cases, the network is identical to that of
the activator-inhibitor model proposed by Gierer and Meinhardt
(17). Condensation of cells by migration into a local region causes
sparse distribution of cells in a neighboring region. This can also
function as long-range inhibition. (Note that the involvement of the
RD mechanism in some of the phenomena above has not been fully
accepted by experimental researchers.)
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